Spotted Wing Drosophila & Other Threats

Alberta Farm Fresh School 2016
Olds, AB

Outline

- SWD
- Late Blight
- Swede Midge
- BMSB
- Others?

Spotted Wing Drosophila

- Drosophila suzukii
- Vinegar fruit fly

There are lots of different fruit flies out there
- Most vinegar flies only attack overripe, decaying, fallen fruit (present in late summer)

SWD – Why are we concerned?

- SWD attacks intact, ripening fruit
- High reproductive potential
- Low consumer tolerance
- Continues to spread very rapidly across a wide geographic area
- All regions in Alberta

Spread of SWD

- First ID’d as a pest in 2008 in California
- Quickly moved into Florida, Oregon & Washington in 2009
- Confirmed in British Columbia in 2009
- Found in significant numbers in 2010
- Discovered in Alberta in 2010
- Now found in most Canadian provinces

Alberta Situation – SWD

- Trapping/monitoring since 2010
- Found in low levels in all traps across Alberta in 2015
- Typically later season captures
- Main monitored crops = raspberry, strawberry, Saskatoon berry
- Captures in 2015 in raspberry, sour cherry and Saskatoon berry
Host Crops - SWD

- Alberta
 - Strawberry, raspberry, Saskatoon berries?, black currant?, sour cherries?, Haskap?
 - Other host crops (cultivated & wild)
 - Cherries, peaches, plums, nectarine, honeysuckle, apricot, blueberry, blackberry, grape, elderberry, dogwood, Oregon grape, etc.

Spotted Wing Drosophila

- Higher risk host crops?
 - Softer skinned fruit
 - Later season crops
 - Raspberries and Day neutral strawberries

Spotted Wing Drosophila - Adults

- 2-3mm light yellow-brown flies with red eyes
- Males
 - Single black spot on the end of each wing
- Females
 - No spots, but distinctive saw-like ovipositor (egg-laying device)

Drosophila suzukii female VS male character summary:
SWD – Life Cycle

- **May spread by:**
 - Windblown adults (shorter distances)
 - May be some long distance movement based on wind trajectory analysis in 2015
 - Transportation of infested fruit (long distances)
- **Overwinter as adult flies**
 - Not known if overwinters in AB conditions
 - Definitely possible in specific microclimates
 - Can tolerate high heat and cold winters

SWD – Life Cycle

- **Adults may be present from June to November** (in some areas)
 - Prefer warmer conditions (20-30°C)
- **Females lay eggs inside intact, ripening fruit**
 - Lay over 350 eggs
 - Eggs develop into larvae in 1-3 days

SWD – Life Cycle

- **Larvae hatch and feed within the fruit**
 - Mature within about 2 weeks
- **Pupae stay within or on the fruit**
 - Up to 2 weeks
SWD – Symptoms / Damage

- Females saw through the intact flesh
 - Pinprick-size holes are visible in the soft areas of the fruit
- Larvae hatch and feed within the fruit
 - Fruits soften where feeding is occurring
 - Multiple larvae accelerates fruit collapse
- **Fruit becomes unmarketable**
- Disease may develop in infested fruit

SWD – Monitoring / Trapping

- **Monitor for adults from mid-late May onwards**
- **Use baited traps**
 - Apple cider vinegar OR
 - Yeast & Sugar
- **Trapping started in AB in 2011**
 - **Up to 12 locations across province**

Example SWD Trapping Kit

- **Contech trap**
- **Apple Cider Vinegar**
- **Strainer**
- **Alcohol**
- **Wash bottle**
- **Funnel**
- **Vials/Lids**
- **Wooden stakes**
- **Electrical tape (to attach trap to stake)**
- **Permanent marker**
- **Transport tub**
- **SWD info sheets**
- **Vial tray**

Note: Sunken flesh, oviposition holes, larvae & pupae.
SWD – Management

- Ensure good sanitation
 - Clean up leftover or fallen fruit
 - In field, in storage, on equipment
 - Bury (12+ inches), freeze, solarize
 - Composting IS NOT effective
 - Cool harvested fruit to slow larval development

SWD – Management

- Apply registered insecticides to control adult flies
 - Apply if trapping indicates presence
 - May need to spray to keep things from transferring to later crops
- Chemical choices
 - Most effective = pyrethroids, organophosphates, spinosads
 - Not effective = neonicotinoids

Late Blight

- Phytophthora infestans
- Affects all aboveground parts, plus infects tubers
- Requires living tissues to overwinter
- Serious disease of Solanaceous plants
 - Primary Hosts
 - Potatoes
 - Tomatoes
 - Secondary Hosts
 - Eggplant, peppers, petunia
 - Solanaceous weeds (nightshade, wild tomato)

Life Cycle of Late Blight

- Needs 2 mating types
- Needs free water for germination

In Season:

US-23 (A1) in AB this last season
Late Blight Strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Preferred Host</th>
<th>Metalaxyl Resistance</th>
<th>Mating Type</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>US8</td>
<td>Potato</td>
<td>Resistant</td>
<td>A2</td>
<td>Wet / Cool</td>
</tr>
<tr>
<td>US11</td>
<td>Potato</td>
<td>Resistant</td>
<td>A2</td>
<td>Wet / Cool</td>
</tr>
<tr>
<td>US22</td>
<td>Tomato</td>
<td>Susceptible</td>
<td>A2</td>
<td>Moist / Warm</td>
</tr>
<tr>
<td>US23</td>
<td>Tomato/Potato</td>
<td>Susceptible</td>
<td>A1</td>
<td>Dry / Hot</td>
</tr>
<tr>
<td>US24</td>
<td>Potato</td>
<td>Intermediate</td>
<td>A1</td>
<td>Moist / Warm</td>
</tr>
<tr>
<td>CA15</td>
<td>Potato</td>
<td>Susceptible</td>
<td>A2</td>
<td>?</td>
</tr>
</tbody>
</table>

Table by Dr. Larry Kawchuk, AAFC

Dark, water-soaked lesions

Lesions are not contained by leaf veins

Lesions may have a yellow edge

Lesions become brown & brittle within a couple of days

Lesions are not contained by leaf veins

Lesions move in from leaf tip or margin

LB on tomato

Lesions move in from leaf tip or margin

LB on tomato
Sporulation may occur under moist conditions – on older lesions.

Plants may be rapidly defoliated & die.

Lesions may also develop on stems, tomato fruit or potato tubers.

Disease develops rapidly in field.

Rot penetrates deeply.

Rot may have a reddish-brown colour.

Disease may spread to healthy tubers in storage.
Late blight tuber rot

LB on tomato fruit –
Note – sporulation on surface

Conditions Favouring Disease Development

- Moderate temperatures & wet/humid conditions
 - 16-21°C day / 10-16°C night

- Extended periods of leaf wetness favour spore germination & lesion development
 - Dew
 - Irrigation

Management Strategies

- Prevent overwintering on living tissues
- Avoid introduction of infected materials
 - Manage cull piles
 - Use clean seed potatoes
 - Use care when bringing in transplants from other regions where late blight may exist

Conditions Favouring Disease Development cont’d

- Disease transfers from infected living tissues
 - Tubers (seed potatoes, cull piles)
 - Volunteer potatoes or weeds
 - Transplants (tomatoes)

- Spores are spread through:
 - Wind (many miles – 50+)
 - Rain/water splash – in field
Management Strategies

- Dispose of infected material as soon as detected
 - Bury / freeze infected tissues
 - Tarp compost piles
- Top kill to reduce tuber infection & continued spread
- Cull potato tubers heavily before storage

Management Strategies

- Plant resistant tomato varieties
 - *Mountain Magic*, *Defiant PHR*, *Mountain Merit*, and *Iron Lady*
- Control volunteers and Solanaceous weeds
- Adjust plant density to reduce humidity
- Water using drip or flooding to reduce wetting foliage
- Apply PROTECTIVE applications of fungicides

Late Blight is a "Community Disease"

Swede Midge

- *Contarinia nasturtii*
- Tiny, light-brown flies
 - Larval feeding causes gall formation = unmarketable plants
- Affects cruciferous crops
 - Cole crops – cabbage, broccoli, etc.
 - Canola
 - Mustard
 - Cruciferous weeds

Swede Midge

- Why are we concerned?
 - Serious pest in other areas of the world
 - Increasing across Canada
 - 1st found in 2000 in ON, now found up to Saskatchewan
 - Vegetable crop losses reported to be as high as 85%
 - We have a over 6 MILLION acres of one of the host crops in Alberta
What Swede Midge does...

- Larvae feed near growing points & between tightly compressed leaves and petioles
- Secretions break down tissues
 - Secretions = toxic to the plant
- Tissues react causing misshapen plants and plant parts

Swede Midge – Management

- Select less susceptible plant types (e.g. cabbage vs broccoli)
- Buy/use clean transplants
- Maintain a crucifer-free rotation for 2+ years
 - Crop hosts AND weeds
- Avoid growing very near other host crops
- Destroy infested crops to reduce potential to harbour SM
- Systemic insecticides would be effective at controlling larvae and adults
Brown Marmorated Stink Bug (BMSB)

- *Halyomorpha halys*
- Wide host range (over 300 species)
 - Fruit, vegetable, ornamental and agricultural crops
 - Feeding by nymphs and adults = necrotic spots at feeding sites

BMSB – Why are we concerned?

- Invasive alien species
 - Native to Asia
- Serious pest of fruit, veg and agriculture crops in the mid-Atlantic region of the USA
- Has been found in most of the United States
 - Not necessarily established and causing issues in every state
- Has been found in RVs coming from United States to Alberta
 - Hitchhikers from milder areas

Pheromone traps

- Monitor for early detection
- Ensure clean, pest-free plant material
- Pesticide applications = limited efficacy

OTHER PESTS?
Other pests?

- Cherry fruit fly
- Carrot weevil
- Carrot rust fly
- Garlic diseases

**QUESTIONS???

Rob Spencer, BSA, MSc, P.Ag.
Commercial Horticulture Specialist

Robert.spencer@gov.ab.ca

Alberta Ag-Info Centre

310-FARM